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We derive a central limit theorem for the probability distribution of the sum of many critically correlated
random variables. The theorem characterizes a variety of different processes sharing the same asymptotic form
of anomalous scaling and is based on a correspondence with the Lévy-Gnedenko uncorrelated case. In par-
ticular, correlated anomalous diffusion is mapped onto Lévy diffusion. Under suitable assumptions, the non-
standard multiplicative structure used for constructing the characteristic function of the total sum allows us to
determine correlations of partial sums exclusively on the basis of the global anomalous scaling.
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The central limit theorem �CLT� for sums of independent
random variables �1� plays a fundamental role in statistical
physics. This theorem is essential for the construction of
equilibrium statistical mechanics �2�, underlies the descrip-
tion of Brownian diffusion �3�, and provides justification to
numerical approaches like Monte Carlo methods. According
to it, the probability density functions �PDF’s� of the sums
are Gaussian when the single-variable PDF’s have finite sec-
ond moment. If on the other hand these PDF’s have long-
range tails determining the divergence of the second mo-
ment, the Lévy-Gnedenko limit theorem states that the sums
are Lévy distributed �1,4�. There are, however, many situa-
tions, like critical phenomena in statistical systems �5�, fi-
nancial time series �6�, anomalous transport �7�, and protein
dynamics �8�, where the presence of strong correlations leads
to non-Gaussian PDF’s obeying anomalous scaling with fi-
nite second moment �9�. Understanding how correlations de-
termine anomalous scaling and universality is still a chal-
lenge in general, at least outside equilibrium statistical
mechanics. Indeed, in this context renormalization group
�RG� methods opened the way to a probabilistic interpreta-
tion of scaling and universality in critical phenomena �10�.
RG transformations for effective Hamiltonians provide a
framework for the discussion of critical scaling in cases
when, due to the lack of independence, the simple factoriza-
tion of individual variable characteristic functions �CF’s�, on
which the CLT is based, does not hold. This framework re-
quires new and more complicated forms of limit theorems
and stability criteria �10�. In view of the key role played by
the CLT in many fields, it is legitimate to ask if some form of
CF factorization helps in discussing the correlated case. This
could allow us to establish parallels between the treatments
of independent and strongly dependent variables.

In this Rapid Communication we show that a nonstandard
factorization of summand variable CF’s allows one to con-
struct the CF of the sum consistent with the assumption of
asymptotic anomalous scaling. This factorization is at the
basis of a novel CLT and, under further conditions, allows
one to reconstruct the correlations of the asymptotic process.

In many physical situations, as one considers the sum X
��i=1

N Xi of stochastic variables Xi with values xi in the real

axis, it is observed that for large N the PDF of X, pX�x�,
asymptotically obeys a simple scaling:

NDpX�x� � g� x

ND	 , �1�

where g is a scaling function and D is a scaling exponent.
The scaling is anomalous if g is not a Gaussian function or
D�1/2. As appropriate in most physical applications, we
consider cases in which pX has finite second moment. The
Xi’s and X could be, respectively, the spins and the total
magnetization of a critical ferromagnetic system. They could
also represent the hour-by-hour increments and the total
variation of a return in a financial time series which is
sampled on intervals of N hours. Self-similarity is implied by
Eq. �1� since plots of NDpX vs x /ND at different N asymp-
totically collapse onto the same curve g. To make this idea
more precise, one can consider the normalized sum Y
��i=1

N Xi /ND and its PDF pY�y�� pN�y�. From Eq. �1� fol-
lows then, in the limit N→�,

pN�y� � g�y� . �2�

For the CF of pN, p̃N�k��
−�
+�exp�iky�pN�y�dx, Eq. �2� reads

p̃N�k� � g̃�k� , �3�

where g̃ is the Fourier transform �FT� of g �p̃N�0�= g̃�0�=1�.
We assume here that pN is even in y, so that p̃N�−k�= p̃N

* �k�
= p̃N�k�. Furthermore, p̃N�k�=1−�2k2 /2+O�k4�, where the
coefficient of k2 is twice the second moment of pN. Below,
we choose units such that �2 /2=1.

If we consider independent and identically distributed
Xi’s, the CLT accounts for the asymptotic scaling in Eqs. �2�
and �3� stating that it is not anomalous; i.e., it has D=1/2
and g Gaussian. Let us call p1 the PDF of any individual Xi
and p̃1 the corresponding CF. By N-times convolution, one
gets

p̃N�k� = �p̃1�k/N1/2��N. �4�

One can prove �1� that p̃N becomes Gaussian ��exp�−k2�� at
large N for any p1 with finite variance 
−�

+�p1�x�x2dx=2. Via
inverse FT this implies a Gaussian form for the asymptotic
pN and D=1/2. A key concept here is that the limit PDF of
the sum is stable; i.e., the sum of two independent Gaussian
distributed variables is still Gaussian distributed. This stabil-
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ity can be represented, e.g., by an invariance of g̃ under
multiplication:

g̃�k/21/2�g̃�k/21/2� = g̃�k� . �5�

This functional relation directly follows in the large-N limit
from Eqs. �3� and �4� and has g̃�k�=exp�−k2� as the only
possible solution.

Here we investigate the possibility of a generalization of
the multiplicative structure in Eq. �5� through the following
steps: �i� We assume the existence of a g̃ and a D character-
izing a given form of asymptotic anomalous scaling. �ii� We
then introduce, in terms of g̃ and D themselves, a generalized
multiplication � such that the identity

g̃�k/2D� � g̃�k/2D� = g̃�k� �6�

holds. �iii� Eventually, we apply this generalized multiplica-
tion � to CF’s different from g̃ in order to prove a CLT,
implying the existence of a wide class of correlated pro-
cesses asymptotically behaving consistently with the scaling
specified by g̃ and D.

We consider scaling functions with the additional property
of g̃ being strictly monotonic in �0, + � � �11�, which in our
context also implies 0� g̃�k��1∀ k�R. For a1 ,a2� �0,1�,
the generalized multiplication allowing satisfaction of Eq.
�6� is

a1 � a2 � g̃„��g̃ −1�a1��1/D + �g̃ −1�a2��1/D�D
… , �7�

where g̃−1 is the inverse of g̃ in �0, + � �. One can easily
verify that a1 � a2� �0,1� and a1 � 1=a1 and that � is asso-
ciative and commutative �13�. Equation �6� is recovered by
putting a1=a2= g̃�k /2D�. It is important to remark that if g̃ is
Gaussian and D=1/2, the � multiplication reduces to the
ordinary one. The consideration of a1�a2 in Eq. �7� is
clearly not needed to recover Eq. �6�, but becomes of crucial
importance to determine joint probabilities for partial sums
of the Xi’s compatible with the anomalous scaling of the total
sum �12�.

One can further establish a precise correspondence be-
tween this generalized multiplication and the ordinary one.
Once fixed g̃ and D, let us consider the mapping
Mg̃,D : �0,1�→ �0,1� defined as Mg̃,D�·��exp�−�g̃ −1�·��1/D�
and its inverse Mg̃,D

−1 �·�� g̃(�−ln�·��D). Equation �6� can then
be rewritten as

Mg̃,D
−1 �Mg̃,D�g̃�k/2D��Mg̃,D�g̃�k/2D��� = Mg̃,D

−1 �Mg̃,D�g̃�k��� ,

�8�

which exemplifies the fact that Mg̃,D establishes an isomor-
phism between the generalized and ordinary multiplications.
A key consequence is that ĝ�Mg̃,D�g̃� obeys a condition of
the form �5� with the exponent 1 /2 replaced by D. This is the
well-known Lévy-Gnedenko stability condition for indepen-
dent random variables, which has the singular Lévy CF
exp�−k1/D� as solution �1,4�. Consistently, of course, ĝ�k�
=exp�−k1/D�. Notice that the Lévy-stable ĝ loses the mean-
ing of CF for D�1/2, because the corresponding PDF
ceases to be positive definite. Here this limitation does not
apply, since the inverse FT of ĝ does not represent a PDF.

According to the Lévy-Gnedenko limit theorem �1�, the
Lévy-stable CF is approached in the N→� limit for the
sum of N independent variables whose individual CF has
the same leading singularity �k1/D at k=0. This circum-
stance and the above mapping suggest to look at the
counterpart of such convergence process in the space of
correlated PDF’s. In analogy with the independent case �Eq.
�4��, we can indeed construct the CF of the sum of N
correlated variables, starting from a single-variable CF p̃1,
but replacing the ordinary multiplication with the generalized
one, as specified by the chosen g̃ and D. As before, p̃1
is assumed to be regular and to generate a finite second
moment, but in general will not coincide with g̃. If we
pose p̂1�Mg̃,D�p̃1�, this function is singular at k=0:
p̂1=1− k1/D+O�k2/D�. Hence, by the Lévy-Gnedenko limit
theorem, �p̂1�k /ND��N� ĝ�k�=exp�−k1/D� for N→� �1,4�.
The above isomorphism guarantees then that �14�

�9�

for N→� and for any p1 with finite variance �2=2. Equation
�9� follows from the fact that Mg̃,D

−1 �ĝ�= g̃ and expresses a
CLT for general g̃ and D. Starting from a single-variable
PDF p1, the iterated generalized multiplication of its CF
yields the CF for the sum of the variables in a process where
the Xi’s are correlated. In force of the CLT, this process leads
asymptotically to the universal anomalous scaling specified
by g̃ and D.

The validity of Eq. �9� does not require D�1/2 because
again the inverse FT of p̂1 is not constrained to remain posi-
tive. However, other positivity requirements can pose limits
on the choice of p1. Indeed, there is no guarantee that, if p̃1
is a CF, p̃1 � p̃1 will also be, in general. Since positivity
control is a hard mathematical issue �1,15�, we addressed it
numerically by analyzing the convergence process in Eq. �9�
for several g̃’s and p̃1’s. We verified that as long as p̃1 has the
same general properties assumed for g̃, pN�y�
��1/2��
−�

+�exp�−iky��p̃1�k /ND���Ndk remains positive
definite for any N. For illustration we report the results for
the case g̃�k�=1/ �1+k2�—i.e., g�y�=exp�−y  � /2 and
g̃−1�a�=−�1/a−1 for a� �0,1�. Figures 1 and 2 show the
evolution of pX�x� under the generalized multiplications of
the single-variable CF for a Gaussian p1�x�
=exp�−x2 /4� /�4� and, respectively, D=0.9 and D=0.25. In
general, larger D’s imply faster convergence to the fixed
point. However, after a sufficient number of iterations, all the
collapses we checked are almost perfect. One may wonder if
Eq. �9� remains valid for more general forms of p1. A first
extension of the above results can be obtained by considering
single-variable PDF’s with two symmetric peaks, which,
e.g., could be relevant for magnetic or diffusive phenomena.
In this case p̃1 is not strictly positive anymore, so that a
continuation of the generalized multiplication to negative
values is required. One can indeed find a continuation that
preserves the isomorphism with the ordinary multiplication
�12�. We verified �12� that while Eq. �9� remains valid as-
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ymptotically, for this new class of p̃1’s positivity problems of
the iterated PDF’s can arise during the initial stages of the
convergence process.

In all examples, only the constraint �2=2 and, possibly,
positivity requirements pose limitations on the domain of

attraction of the stable PDF. This universality, typical of the
CLT, is a consequence of the multiplicative structure in Eq.
�9�. Indeed, in Eq. �9� normalization �p̃N�0�=1�N=1�, cen-
tering �
−�

+�ypN�y�dy=0�, and variance �
−�
+�y2pN�y�dy=�2

=2� are conserved, as in the independent case. Thus, the
trajectory described by pN in function space differs substan-
tially from a typical RG flow, in which the variance is not
conserved and relevant scaling fields determine the critical
surface �10�. Here, relevant fields are not present �16� and the
result in Eq. �9� identifies at least a subset of the universality
domain of the assumed asymptotic anomalous scaling speci-
fied by g and D. A further feature of our findings is that the
choice of g does not imply a selection on admissible values
of D and vice versa. This appears consistent with the variety
of different anomalous scaling functions and exponents ob-
served in natural phenomena �18�.

A basic issue is that of identifying an explicit mech-
anism by which correlations are introduced by the �

multiplication. Let us consider the normalized partial
sums Y1=�i=1

N/2Xi / �N /2�D and Y2=�i=N/2+1
N Xi / �N /2�D. The

correlations between Y1 and Y2 are fully specified once
their joint PDF pN

�2��y1 ,y2� is given. Knowledge of pN

alone does not allow one to determine pN
�2� in general

since many pN
�2� are such to satisfy the obvious con-

dition pN�y�=
−�
+�pN

�2��y1 ,y2���y−y1−y2�dy1dy2. Thus, many
different correlation patterns are compatible with the
anomalous scaling of pN. Equation �9� asymptotically fixes
p̃N

�2��k /2D ,k /2D�� g̃�k /2D� � g�k /2D�, where p̃N
�2� is the FT of

pN
�2�. In the independent case this last result would hold with

FIG. 1. Gaussian p1 and D=0.9. Plot of pX for N=2k, k
=0,1 ,2 ,3 �a� and k=4,5 ,6 ,7 �b�. As N increases, the central peak
of pX decreases. The rescaled plots for k=0,1 , . . . ,7 have increas-
ing peaks and reveal convergence for large N: �c� and �d�.

FIG. 2. Rescaled plots of pX with D=0.25, N=2k, k
=0,1 , . . . ,22: �a� and �b�. Comparison with Fig. 1 indicates slower
convergence when D is smaller.
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g̃ Gaussian, D=1/2 and the standard multiplication replacing
� . Furthermore, p̃N

�2��k1 /21/2 ,k2 /21/2�� g̃�k1 /21/2�g̃�k2 /21/2�
would clearly hold in that case also for k1�k2, so that p̃N

�2�

would be fully specified in terms of g̃. It is natural to ask if,
under suitable assumptions, an analogous factorization of
p̃N

�2� with k1�k2 holds in terms of the � multiplication also
in the correlated case. This property would imply the possi-
bility of expressing the correlations determining the anoma-
lous scaling in terms of pN alone. It can be shown �12� that
such a factorization is indeed possible if additional symme-
tries of pN

�2� are assumed, like the vanishing of linear corre-
lations between Y1 and Y2, 
−�

+�y1y2pN
�2��y1 ,y2�dy1dy2=0. This

vanishing does not hold for other stochastic processes pos-
sessing anomalous scaling considered in the literature, like,
for example, fractional Brownian motion �17�. Because of
market efficiency, the vanishing of linear correlations char-
acterizes, e.g., financial time series, where pN is the PDF of
the normalized return of an index in time N. For such series
we were able to show �12� that the asymptotic form of p̃N

�2�

can be uniquely determined starting from pN and using a �

multiplication. The agreement of the theoretical predictions
with the empirically sampled pN

�2� is quite remarkable �12�.
Thus, the generalized multiplication operation defined above
is also a key for the full characterization of a relevant class of
stochastic evolution processes.

One can also establish a connection between the present
CLT and anomalous diffusion. Let us consider a single-
variable PDF of the form p1�x�= ���x−	�+��x+	�� /2 and
define a time t�N
. Here, releasing the condition �2=2, 	
and 
 are, respectively, the space and time spans of random
steps, and t is the time at which the Nth step occurs. In the
continuum limit N→�, 
→0, 	→0, such that t and D1/2D

�	1/D /
 remain finite, one recovers �12� limN→��p̃1�k���N

� p̃�k , t�=Mg̃,D
−1 �p̂�k , t��, where p̂�k , t� satisfies the standard

Lévy diffusion equation �19�

� p̂�k,t�
�t

= −
D1/2Dk1/D

21/2D p̂�k,t� . �10�

Assuming p�x ,0�=��x�, one gets the solution p̂�k , t�
=exp�−D1/2D k1/Dt /21/2D�, which corresponds to p̃�k , t�
= g̃�D1/2ktD�=1−Dk2t2D /2+O�D2k4t4D�. Hence, �x2��t�
=Dt2D �12�. Thus, correlated sub- �D�1/2� and super- �D
�1/2� diffusive solutions can be obtained through our map-
ping from the propagator of the uncorrelated Lévy diffusion
equation �10�. This enables the description of the evolution
towards the asymptotic anomalous diffusion regime �analo-
gous to Figs. 1 and 2� without introducing a broad distribu-
tion of waiting times elapsing between successive steps as is
done in the continuous-time random walk approach �7,20�.

In summary, assuming anomalous scaling �Eqs. �1� and
�2�� we have constructed a multiplicative functional identity
for the CF of the asymptotic sum of strongly correlated ran-
dom variables which allowed the definition of a generalized
multiplication. An isomorphism between this multiplication
and the ordinary one leads to establish a CLT in which the
anomalous scaling represents the asymptotic limit. Thus, for
a given asymptotic anomalous scaling form we have charac-
terized a large class of processes falling in the corresponding
universality domain. In particular cases our strategy also al-
lows a full determination of the joint probabilities and thus
of the correlations of partial sums of the random variables
�12�. In the context of stochastic processes, the presence of
correlations implies that past events have an influence on the
future behavior. Knowledge of the joint probability of con-
secutive events �like Y1 and Y2� hence entails a predictive
power which has been recently exploited in finance �12�.
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